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ABSTRACT
Riemannian methods have established themselves as state-
of-the-art approaches in Brain-Computer Interfaces (BCI) in
terms of performance. However, their adoption by experi-
menters is often hindered by a lack of interpretability. In this
work, we propose a set of tools designed to enhance prac-
titioners’ understanding of the decisions made by Rieman-
nian methods. Specifically, we develop techniques to quantify
and visualize the influence of the different sensors on clas-
sification outcomes. Our approach includes a visualization
tool for high-dimensional covariance matrices, a classifier-
agnostic tool that focuses on the classification process, as well
as methods that leverage the data’s topology to better charac-
terize the role of each sensor. We demonstrate these tools on
a specific dataset and provide Python code to facilitate their
use by practitioners, thereby promoting the adoption of Rie-
mannian methods in BCI.

Index Terms— Interpretability, Riemannian geometry,
Brain Computer Interfaces, ElectroEncephaloGram

1. INTRODUCTION

Controlling a device through the modulation of the brain ac-
tivity is an absolute challenge, especially when using non-
invasive techniques such as electroencephalography (EEG).
Brain Computer Interfaces (BCI) [1] rely on the acquisition
of users’ brain signals, their conversion into commands, and
the provision of feedbacks to users to inform them about their
mental states in real time. The challenge stems from the
various sources of variability, which lead 15–30% of BCI
users to be unable to control a BCI device even after several
training sessions [2, 3, 4]. Among these sources of variabil-
ity are the quality of the signal (e.g. signal-to-noise ratio),
and some intrinsic characteristics of the BCI experiment it-
self. Indeed, a standard pipeline typically involves extracting

This work was funded by the French National Research Agency for
project PROTEUS (grant ANR-22-CE33-0015-01). We also acknowledge
support from the European Research Council, Grant Agreement No. 864729

Subject MDM Score Class Riem. Variance

1 0.84± 0.02
Left hand 11.20

Right hand 10.01

2 0.49± 0.04
Left hand 17.44

Right hand 16.22

3 0.93± 0.03
Left hand 24.71

Right hand 20.56

4 0.68± 0.10
Left hand 10.24

Right hand 11.93

5 0.54± 0.07
Left hand 14.55

Right hand 13.17

6 0.66± 0.07
Left hand 18.44

Right hand 22.06

7 0.71± 0.14
Left hand 12.85

Right hand 12.01

8 0.95± 0.02
Left hand 15.02

Right hand 15.10

9 0.77± 0.04
Left hand 24.66

Right hand 30.73

Table 1: Performance of the MDM classifier per subject and
class on the dataset BNCI2014-001. The Riemannian vari-
ance is reported for each class.

features from EEG signals—sometimes neurophysiologically
relevant ones—and feeding them into a machine learning al-
gorithm. This leads to sources of uncertainties in the outcome
that can hinder the feedback to subjects. With discriminant
signals stable in time, those sources of uncertainty would not
be an issue. Unfortunately, this is not the case in the context
of motor imagery (MI) based BCI which rely on the imagina-
tion of a movement without performing it. Indeed, the diffi-
culty of this task generates different types of variability [5, 6]:
i) inter-subject variability: the mental task is performed dif-
ferently by the different subjects; ii) intra-subject variability:
changes across time can be observed due to the signals drift
or to fluctuations of the neural signatures because of the sub-
jects’ fatigue or difficulty in performing the tasks in a robust
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Fig. 1: t-SNE visualization of subject 8 of BNCI2014-001 and of subject 13 of Cho2017. Each point represents a 2 × 2
covariance matrix. The shape of the markers and the colormaps correspond to the two classes (left hand and right hand).
Given a class (therefore a colormap), the color is chosen as the time index of recording of the corresponding EEG.

way. MI-based BCI [7] usually rely on the use of power spec-
tra features, exploiting the Event Related Desynchronization/
Synchronization (ERD/ERS) [8] effect that occur in certain
frequency bands (α 8-12 Hz, β 13-30 Hz [9]). The ERD/S ef-
fect consists in the local (the sensori motor regions) decrease
(Desynchronization) of power spectral density and in the in-
crease (Synchronization) in the α and β bands with respect
to a baseline test. These features appear to vary over time
for most subjects, even when task performance remains high,
suggesting a performance plateau that may result from the
current features capturing only local and incomplete informa-
tion [10]. In recent years, Riemannian geometry based algo-
rithms completely obliterated the competition regarding BCI
scores. These Riemannian methods use as main feature the
covariance matrix, and leverage the mathematical structure of
the latter to yield better results [11]. Indeed, a covariance ma-
trix is a Symmetric Positive Definite (SPD) matrix, inducing
a non-flat Riemannian structure where the curvature plays a
critical role. These Riemannian algorithms are mainly more
robust to noise [12], and therefore became the state of the
art in the classification of EEG data for BCI. Unfortunately,
the Riemannian approach cannot be linked directly to what
is known from a neurophysiological perspective, mainly be-
cause the covariance matrix is not inherently interpretable. A
reduced number of works proposed to select more relevant
subsets of channels based on the Riemannian classification
[13], but those works were meant to improve the classifica-
tion results and not to serve as support for interpretation. In-
deed, it is necessary to develop tools to explain why these Rie-
mannian methods perform well at classifying MI tasks from a
neurophysiological perspective—both at the feature level and
at the classification level—in the same way it is possible with
ERD/ERS. Here, we propose original approaches suited for

Riemannian geometry methods from the features’ perspective
(the covariance matrices) and agnostic to the classifier which
show both temporal and spatial interpretations. Being able to
interpret Riemannian classifiers could help uncovering poten-
tial ”Clever Hans” phenomena [14] and eliminate potential
biases in data. Those tools would help the BCI community
in adopting with more trust the Riemannian approach mean-
ing we could access to the best performing algorithm while
knowing that they can be neurophysiologically explained. All
the tools presented in the following are available on a GitHub
repository1, to ease their adoption by the community.

2. VISUALIZATION OF COVARIANCE DATASETS

When dealing with new datasets to classify, a classical first
step consists in exploring the features by visualizing them to
see if they are differentiable [15]. Such a step is also impor-
tant to provide some insights on the brain signatures associ-
ated with the task performance. When the objects of interest
are covariance matrices, one problem in visualizing them is
their high dimensionality. Indeed, the EEG is recorded us-
ing C sensors, so the associated covariance matrix is of size
C × C. When C > 2 (which is often the case in BCI), one
cannot visualize the set of covariance matrices. To solve this
issue, we use a Riemannian version of the t-SNE algorithm
proposed in [16]. This tool enables the user to reduce the
dimension of covariance matrices (and more generally SPD
matrices) to 2×2 SPD matrices while taking into account the
Riemannian geometry of SPD matrices. These low dimen-
sional SPD matrices can be plotted in 3D, as a 2 × 2 SPD

1https://github.com/thibaultdesurrel/influence_channel



matrix is of the following form:

X =

(
a b
b c

)
where a > 0, c > 0 and ac > b2. The symmetry of these
matrices lead to a 3 dimensional space and X can therefore
be represented in R3 using the coordinates (a, b, c). One can
then plot the set of covariance matrices of a particular sub-
ject and try to understand what is going on. Moreover, if one
knows the recording order of the EEGs, one can also visual-
ize the temporal evolution of the covariance matrices using a
colormap for example. We did this for the subject 8 of the
dataset BNCI2014-001 [17] and the subject 13 of the dataset
Cho2017 [18]. The resulting 3D plots are given at fig. 1.
In these plots, we show two different things. First, the two
colormaps correspond to the two classes (left hand and
right hand). According to table 1, we know that subject
8 of BNCI2014-001 has a high classification score (0.95 ±
0.02). We therefore expect the classes to be well separated
in the t-SNE visualization. We recall that the t-SNE has no
class information during its fitting. This is what we observe
in the left plot of fig. 1, as it seems that the two colormaps are
in different areas of the plots. On the contrary, subject 13 of
Cho2017 has a very bad classification score (0.55±0.04) and
we can indeed see in the right plot of fig. 1 that the two col-
ormaps are completely mixed up. Therefore, we have a coher-
ent result between the t-SNE visualizations and the a posteri-
ori classification results. We also plot a second information,
given a class (therefore a colormap), the color is chosen as the
index of recording of the corresponding EEG. Therefore, if
we focus on the left hand, the greener the points are, the latter
in the session they were recorded. We can thus see the evo-
lution of the mind state of the subject during the experiment.
For subject 8 of BNCI2014-001 (the plot on the left of fig. 1),
the dataset was recorded during two separated sessions. This
is visible as the points (in each class) seem to be separated in
two clusters: a red/blue one and a yellow/green one. Those
two clusters actually correspond to the two sessions.

Such a visualization technique could also be used to un-
derstand and illustrate the strategy employed by a user to gen-
erate a given command, or to detect drifts in the data. Ad-
ditionally, it could serve as feedback during the calibration
phase or throughout user training.

3. CONTRIBUTION OF AN ELECTRODE TO THE
FRÉCHET VARIANCE

The previous tool presents the advantage of reducing the di-
mension while showing the separability between classes and
through time. However, spatial interpretation is still needed to
establish a link with the sensorimotor areas involved in motor
imagery tasks. The purpose of the second tool we propose
here is two-fold: i) to identify the resulting variability of the
feature in its class and ii) to link it to its spatial origin. More-

Fig. 2: Mean of the influence of each sensor on the Rieman-
nian variance. Dataset: BNCI2014-001 [17]. The ratio be-
tween the variance of the “partial” covariance matrices and
the “full” ones is plotted here. The darker the color is, the
more variance this sensor brings and the lighter the color, the
less variance is brought by this sensor. The top row corre-
sponds to subjects with a classification score ≥ 0.75 and the
bottom one to the other subjects.

over, this tool can be confronted to the initial ERD/ERS crite-
rion of separability as they both capture related information.

We propose a method to measure the variance brought by
a sensors (without knowing if this variance is brought by noise
or by useful information). For this, let us recall that given
a set of covariance matrices (Xi)i=1,...,N , one can compute
its Riemannian mean [19] X̄ as the point that minimizes the
squared Riemannian distances to each Xi:

X̄ ∈ argmin
X∈PC

1

N

N∑
i=1

δ(Xi, X)2. (1)

where PC is the set of C × C SPD matrices. Then, one
can compute the Riemannian variance, denoted σ2, that cor-
responds to the minimum attained in eq. (1):

σ2 =
1

N

N∑
i=1

δ(Xi, X̄)2.

Let us denote (Xi)i=1,...,N the set of full covariance ma-
trices computed with all the sensors. It is a set of C × C
SPD matrices, where C is the number of channels. Then, for
c ∈ {1, ..., C}, let us denote (X

(−c)
i )i=1,...,N the set of par-

tial covariance matrices computed after removing channel c.
These matrices are therefore of dimension (C − 1)× (C − 1)
and corresponds to the set (Xi)i=1,...,N where we have re-
moved the c-th line and the c-th column. We can compare



Subjects with a classif score ≥ 0.75
Mean Score: 0.882

Subjects with a classif score < 0.75
Mean Score: 0.669
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Fig. 3: Mean of the influence of each sensor on the classi-
fication using an MDM. Dataset: BNCI2014-001 [17]. The
relative error between the score of an MDM trained with the
“partial” covariance matrices and the “full” ones is plotted
here for each sensors. The bluer the color, the most useful the
sensors are for the classification. The right plot corresponds
to subjects with a classification score ≥ 0.75 and the left one
to the other subjects.

the “full” Riemannian variance σ2,full computed using the set
of full covariance matrices (Xi)i and the “partial” Rieman-
nian variance σ2,(−c) computed using the set of partial covari-
ance matrices (X(−c)

i )i, themselves computed after removing
channel c. To compare them, we compute their ratio:

σ2,(−c)

σ2,full .

Such a measure is interpreted as follows: it shows how much
information would be lost if a given electrode were removed.
The information is not necessarily related to the class infor-
mation as some sensors could bring the same amount of infor-
mation in each class (and would not be useful for classifica-
tion purposes) but would be related to some underlying cogni-
tive mechanisms at play in the brain. We can compute this ra-
tio of variances of all sensors and plot them on a topographic
map. This ratio is interesting to look at per class, meaning that
we consider only the covariance matrices of a given class, and
then of the other. We do this on the BNCI2014-001 dataset,
providing the mean topographic maps for subjects with clas-
sification scores above and below 0.75 (see table 1). The to-
pographic maps are given at fig. 2.

4. CONTRIBUTION OF AN ELECTRODE TO THE
CLASSIFICATION

Once the features fed to the classifiers have been evaluated,
we can assess whether those that align with a neurophysiolog-
ical explanation yield the best classification performance in
terms of accuracy. Moreover, we can investigate whether the
performances are aligned with the ERD/ERS criterion. Here,
subjects that presented high level of desynchronization were
found to have good performances using Riemannian classi-
fiers. However, some subjects that would have been discarded
based solely on ERD/ERS considerations still exhibited good

performances. A tool is therefore needed to know if this dif-
ference is purely based on a non-explainable sensitivity of the
classifier, or if it can be traced back to a neurophysiological
explanation (meaning here that sensorimotor regions are the
primary source of information of the classifier).

In order to do this, we want to analyze the influence of the
sensors on the Riemannian classification of covariance matri-
ces. We will use the same setup as in section 3 by comparing
the classification score when considering the “full” covari-
ance matrices or when considering the “reduced” one. Given
a Riemannian classifier (such as the Minimum Distance to
Mean (MDM) or the Tangent Space LDA (TS-LDA) [12]),
one can train it using the set of “full” covariance matrices
(Xi)i=1,...,N or using the set of “partial” covariance matrices
(X

(−c)
i )i=1,...,N . We can then compare the score sfull of the

“full” classifier and the score s(−c) for the “partial” classifier
by computing their relative error:

s(−c) − sfull

sfull .

As this gives us one value per sensor, we can plot all the rel-
ative errors using a topographic map. An important point of
this tool is that it is classifier agnostic, meaning that one can
plug any Riemannian classifier. In fig. 3, we do it for the clas-
sifier MDM on the dataset BNCI2014-001. We plot the mean
topographic maps for the subjects with a classification score
that is greater than 0.75 and for the subjects with a classifi-
cation score that is less than 0.75 (based on table 1). When
the relative error is greater than zero (the areas in red in the
plot), this means that removing the sensors improves the clas-
sifier whereas when the relative error is less than zero (the
blue areas), this indicates that removing the sensors decreases
the classification score. We can see that most of the sensors,
for the subjects with a classification accuracy of over 75%,
are in blue, meaning that they all bring useful information to
the classifier and that removing them deteriorates the classi-
fication accuracy. Moreover, for the subjects with an accu-
racy that is less than 75%, most sensors are in red, meaning
that they most likely bring some noise to the signal and re-
moving them improves the classification. Nevertheless, for
all subjects, the sensors C3 and C4, are very useful as they
are in blue. This is coherent as the motor imagery actions
were left hand versus right hand and the sensors C3
and C4 are the ones that capture this information. There-
fore, the important information for the Riemannian point of
view is the same as from a neurophysiological point of view.
However, for the subjects with an accuracy over 75%, some
sensors seem to be important from a Riemannian perspective
even if it would not be the case neurophysiologically. For
example, the sensors at the back of the head (P2, Pz, POz)
are positioned over the visual cortex. Therefore, neurophys-
iologically, they would be less prone to provide relevant in-
formation regarding the classification of left hand versus
right hand. However, from a Riemannian point of view, it



seems that they bring useful information for the classification,
as removing them worsen the results. A possible explanation
is that the Riemannian classifiers behaves as a ”clever Hans”
and uses some signals triggered by the visual cue shown to
the subject to indicate which action to mentally perform.

5. CONCLUSION

In this work, we propose different tools of visualization and
explanation tailored for Riemannian geometry approaches
over Brain Computer Interface EEG data. These tools make
it possible to evaluate the relevance of the features processed
by classification algorithms, in order to understand where
class separation occurs, both at the feature level and at the
classification level. We exploited tools that reduced the
covariance matrix to low dimensional SPD matrices while
providing the temporal evolution. Furthermore, we provided
a tool to visualize the spatial variability intra-class (via the
Riemannian variance) which can be exploited to understand
the underlying neurophysiological process. Finally, we could
evaluate spatially the contribution of each sensor to the ac-
curacy of the classification which allows a post classification
check on the relevance of the choice made by the classifier.
There is increasing interest in interpretability at the different
steps of BCI pipelines as they are becoming more and more
sophisticated especially with the integration of deep learning
to the classification part [20, 21].

Some limitations must be acknowledged. First, the t-SNE
method is purely a visualization tool, no properties over the
covariance matrices can be retrieved from it; moreover, the
stochastic component makes the visualization variable. On
another note, the variance method is still difficult to inter-
pret especially at the level of the full covariance matrix as
it could be linked to other observations. This suggests further
inquiries on its interpretability. Another limit of our visual-
izations is that they do not provide any insights on the error
bars or subject-level variabilities. Some work could be car-
ried out on developing new ways of visualizing the data pro-
duced by our methods. Nevertheless, this work constitutes a
first proof-of-concept. Indeed, the representation of the co-
variance matrices makes it very difficult to assess their vari-
ation in time. By eliciting the trials, we can track covariance
evolution across time which is crucial to understand how our
features shift from the beginning to the end of the session.
To increase their diffusion, those implementations need to be
validated on more BCI paradigms, not only on motor imagery
based BCI. P300 speller for instance is a BCI that detects the
P300 event-related potential -a spike ∼ 300ms after a target
stimulus- to select characters on a grid by flashing rows and
columns [22, 23]. Another method is SSVEP, a BCI method
where the user focuses on a flickering stimulus at a known
frequency, and the system detects matching frequency com-
ponents in the EEG to infer user intent [24]. Those tools were
mainly designed for an offline use, to investigate the data af-
ter it has been collected. However, in a logic of BCI experi-

mentation integration, they could be added to already existing
pipelines that help in the decision process over features se-
lection to train on for online setups. Then, the computational
complexity of these tools should be studied in more depth.
Those pipelines could then be integrated into dedicated soft-
ware such as HappyFeat [25] (an open-source software pack-
age designed for real-time EEG feature extraction and classi-
fication) and used in experience settings. From another per-
spective, the use case presented here only relied on covariance
matrix as the initial computation step on EEG. Nevertheless,
other estimators can provide SPD matrices. Functional con-
nectivity matrices estimated on coherence, imaginary coher-
ence [26] or even avalanche transition matrices [27] could be
used. As they have been studied more in depth on their neu-
rophysiological signatures, the Riemannian tools applied to
them could find more echoes on their results [28]. Finally, it
is clear that the application of Riemannian approaches could
extend beyond BCI experiments. When it comes to EEG data,
the tools presented here could also be useful in the context of
brain monitoring or diagnosis, as they provide clear metrics
on the data processed by complex classifiers.
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